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In the last decade, the progress of protein crystallography allowed several

protein structures to be solved at a resolution higher than 0.9 AÊ . Such studies

provide researchers with important new information re¯ecting very ®ne

structural details. The signal from these details is very weak with respect to

that corresponding to the whole structure. Its analysis requires high-quality data,

which previously were available only for crystals of small molecules, and a high

accuracy of calculations. The calculation of structure factors using direct

formulae, traditional for `small-molecule' crystallography, allows a relatively

simple accuracy control. For macromolecular crystals, diffraction data sets at a

subatomic resolution contain hundreds of thousands of re¯ections, and the

number of parameters used to describe the corresponding models may reach the

same order. Therefore, the direct way of calculating structure factors becomes

very time expensive when applied to large molecules. These problems of high

accuracy and computational ef®ciency require a re-examination of computer

tools and algorithms. The calculation of model structure factors through an

intermediate generation of an electron density [Sayre (1951). Acta Cryst. 4,

362±367; Ten Eyck (1977). Acta Cryst. A33, 486±492] may be much more

computationally ef®cient, but contains some parameters (grid step, `effective'

atom radii etc.) whose in¯uence on the accuracy of the calculation is not

straightforward. At the same time, the choice of parameters within safety

margins that largely ensure a suf®cient accuracy may result in a signi®cant loss of

the CPU time, making it close to the time for the direct-formulae calculations.

The impact of the different parameters on the computer ef®ciency of structure-

factor calculation is studied. It is shown that an appropriate choice of these

parameters allows the structure factors to be obtained with a high accuracy and

in a signi®cantly shorter time than that required when using the direct formulae.

Practical algorithms for the optimal choice of the parameters are suggested.

1. Introduction

Nowadays, macromolecular crystals diffracting to the resolu-

tion of 1.1±0.9 AÊ are no longer an exceptional case (Fig. 1). At

the same time, progress in crystallization techniques allows

more and more macromolecular crystals to be obtained that

diffract to a resolution of 0.9±0.8 AÊ or even higher. In what

follows, we refer to a resolution higher than 0.9 AÊ as a sub-

atomic resolution. This relatively ¯uid limit marks a new level

in structural studies. For example, it becomes possible to

analyse the density redistribution due to bond formation and

to use more sophisticated structural models of macro-

molecules (Jelsch et al., 2000; Afonine et al., 2002) to describe

this redistribution.

When studying crystals of small molecules at a subatomic

resolution, traditional procedures and algorithms, for example

those realized in program SHELX (Sheldrick & Schneider,

1997), use direct formulae to calculate accurate values of

structure factors. These direct calculations are computation-

ally possible because of a small number of parameters and

structure factors. However, these numbers grow approxi-

mately as a cube with the unit-cell dimensions, and such

calculations become an obstacle in a high-resolution re®ne-

ment of macromolecular models.

Sayre (1951) suggested a fast algorithm that was realized

later by Ten Eyck (1973, 1977) essentially using the speed of

the fast Fourier transform algorithm (Cooley & Tukey, 1965).

This algorithm calculates structure factors through an inter-

mediate generation of the electron density. While an extra

computational step of density generation is introduced, the

total computational cost for macromolecular crystals is

reduced drastically in comparison with the direct formulae to

calculate structure factors from an atomic model. Agarwal

(1978) has shown that a similar intermediate generation of a
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density-like map may be used for fast calculation of the

gradient of the traditional least-squares criterion, and Lunin &

Urzhumtsev (1985) showed that this procedure could be

generalized for an ef®cient calculation of the gradient of any

crystallographic criterion. Currently, practically all programs

developed speci®cally for re®nement of macromolecular

models use the intermediate density generation and fast

schemes of gradient calculation.

The decomposition of all principal calculations in a suite of

transitions from one level of model description to another

(Lunin & Urzhumtsev, 1985; Urzhumtsev et al., 1989;

Urzhumtsev & Lunin, 2001) makes each transformation

independent of the others. In particular, as was noted by

Urzhumtsev et al. (1989), a modular organization of re®ne-

ment programs does not make it dif®cult to replace isotropic

atoms by anisotropic ones [this was practically realized in

REFMAC (Murshudov et al., 1997, 1999) and in CNX (2002)]

or to substitute one reciprocal-space criterion for another.

Similarly, the atomic model may be composed of other types

of scatterers, for example of multipole atoms (Hansen &

Coppens, 1978) and, again, this modi®cation concerns only

two program modules, namely the transition from the model

parameters to the grid density values and the inverse transi-

tion from the derivatives of the criteria with respect to grid

density values to the derivatives with respect to the model

parameters.

On the other hand, such a fast algorithm introduces

computational errors in the values of structure factors because

the intermediate density is calculated at a ®nite grid and

because limited atomic radii are used when generating the

density. Theoretical studies and numerical tests (Ten Eyck,

1977; Agarwal, 1978; Lunin, 1982; BruÈ nger, 1989) suggested a

practical choice for the grid step and for the atomic radii to

obtain structure factors with a reasonable accuracy at the

resolution traditional for macromolecular crystallography,

1.5±4 AÊ . The introduction of an arti®cial additional displace-

ment factor, the same for all atoms of the crystal (Ten Eyck,

1977), allowed more CPU time to be gained.

The structure-factor calculation at both limiting cases, at

low and high resolutions, has some features that should be

taken into account and we addressed the second of these two

cases. When most of our tests had ®nished, Navaza (2002)

published a theoretical analysis of the accuracy of structure

factors calculated by the Sayre±Ten Eyck algorithm. While

formally speaking his analysis is valid for all resolution ranges,

it is implicitly aimed rather at molecular-replacement

problems at middle and low resolutions. For example, the

program AMoRe (Navaza, 1994) uses this method to calculate

structure factors for some given search model. Traditionally,

this is done at the resolution d of 3±4 AÊ and the default grid-

step value of hgr ~ d=4 ensures precise enough values of

calculated structure factors. However, when carrying out

molecular replacement at a low resolution (for example, see

Urzhumtsev & Podjarny, 1995; Ban et al., 1998; Jamrog et al.,

2003; Liu et al., 2003), the default value causes very signi®cant

errors that required the use, for example, of a 1 AÊ grid step

throughout the whole series of tests in Urzhumtsev &

Podjarny (1995). Navaza (2002) has shown that a proper

choice of the additional displacement factor can reduce the

grid step to the value hgr ~ d=3 even for these cases, `up to any

desired maximal resolution'. Navaza (2002) also indicated a

way to estimate the `radius' for Gaussian diffractors that

ensures the required accuracy. Unfor-

tunately, the suggested way is not

convenient in a practical application.

Most importantly, the discussion

concerns the choice of suf®cient, but

not necessary the optimal, parameters.

This is not a limiting criterion for

molecular replacement when AMoRe

(Navaza, 1994) executes it only once

but becomes crucial for re®nement at a

subatomic resolution.

At a subatomic resolution, the CPU

time necessary to calculate structure

factors and linked values (for example,

corresponding gradient) can grow

drastically because of the increased

number of grid points, important

both for density generation

and for Fourier transformation. The

attempts to re®ne relatively large

protein structures [for example, the

re®nement of the structure of catalase

at 0.89 AÊ as announced by Murshudov

et al. (1999)] show that even one cycle

of the re®nement may require a

signi®cant time. The relative compu-

Figure 1
Statistical analysis of macromolecular structures determined at subatomic resolution (models
deposited with the PDB to December 2002): (a) their number, (b) their size, in number of atoms, (c)
their distribution with the resolution at which they were solved, (d) the distribution of minimal
(square) and mean (diamond) B values in these models. Dark bars in (a) show the number of
structures solved per year and grey bars show the cumulative number of structures.



tational cost of algorithms depends on the size of objects and

on the resolution at which they are studied.

The aim of this paper is to discuss several questions that, to

our knowledge, are still open and not discussed in the litera-

ture:

(i) what is the optimal choice of the grid step, of the atomic

radii and of the additional displacement parameter, suf®cient

to calculate structure factors at a subatomic resolution with a

given high accuracy?

(ii) with this optimal choice of parameters, is this algorithm

still more rapid than the traditional calculation through the

direct formulae?

A special study is devoted to the case of models composed

of anisotropic atoms.

2. Models and test conditions

2.1. Macromolecular structures resolved at subatomic
resolution

A statistical analysis of macromolecular models obtained at

a resolution of 1 AÊ or higher deposited in the PDB (Bernstein

et al., 1977; Berman et al., 2000) shows that the number of such

structures increases rapidly and that the size of these struc-

tures can be quite large (Fig. 1). While currently the best

macromolecular crystals, such as crambin (Teeter et al., 1993),

antifreeze protein RD1 (Ko et al., 2003) and aldose reductase

(Lamour et al., 1999), diffract to 0.54, 0.62 and 0.64 AÊ ,

respectively, most of the ultra-high-resolution models were

obtained at a resolution somewhere between 0.7 and 0.9 AÊ

(Fig. 1). This made our choice to study the structure-factor

calculation at resolutions of 0.5, 0.7 and 0.9 AÊ .

At such resolutions, atomic displacement parameters are

usually taken as anisotropic. An equivalent isotropic dis-

placement parameter can be de®ned as

Biso � ��U11 � U22 � U33�=3; �1�
where the scale coef®cient � depends on the de®nition of the

anisotropic tensor U (Grosse-Kunstleve & Adams, 2002);

when working in fractional coordinates, U = U�, following the

notation by Grosse-Kunstleve & Adams (2002), and � = 8�2.

For most of the structures determined at a subatomic resolu-

tion, the minimal value of the parameter Biso varies between

1 and 10 AÊ 2 and the mean value varies between 5 and 20 AÊ 2

(Fig. 1d). The maximal value in some models grows up to 100±

500 AÊ 2 (not shown), indicating either a partial disorder of such

crystals or possibly some problems in the model.

2.2. Test models

A multi-Gaussian approximation of atomic scattering

factors is extremely convenient for crystallographic analysis

because corresponding density distributions in direct space are

also multi-Gaussian functions, thus allowing a simple density

generation and an easy correction for harmonic atomic

displacement. Depending on the problem, different numbers

of Gaussians can be used. A two-Gaussian approximation is

suf®cient for crystallographic studies at 1.5±3 AÊ resolution

(Agarwal, 1978). The available ®ve-Gaussian approximation

of scattering factors is valid up to a very high resolution,

0.25 AÊ (Maslen et al., 1992), and this approximation was used

in our tests. It can be noted that single-Gaussian scatterers can

be used in some special cases like dummy bond electrons

(Afonine et al., 2002, 2004) at subatomic resolution or arti®cial

atoms or blobs at middle and low resolution (Agarwal &

Isaacs, 1977; Lunin & Urzhumtsev, 1984; Lunin et al., 1995).

In our tests, a number of models were used. All these

models were placed in a unit cell in space group P1 in order to

exclude any correlation of results, especially the CPU time,

with the number and type of crystal symmetries. For simplicity,

the unit cell was taken orthogonal, with � = � = 
 = 90�. The

size of the cell varied with the size of the model.

Initially, several synthetic structures, composed of one or

few atoms, were studied. This unit cell with a = b = c = 10 AÊ

was large enough to consider such models as isolated.

First, a single Gaussian `atom' with the scattering factor

f �s� � f �s� � A exp�ÿBs2=4� �2�
was analysed. Here and in what follows, s stands for the

modulus of the vector s = (h,k, l). For similarity with well

ordered C atoms, the parameter A was taken equal to 6, and B

varied between 1 and 5 AÊ 2. Then a C atom was taken with the

scattering factor in the form of the ®ve-Gaussian approxima-

tion (Maslen et al., 1992):

f �s� � f �s� � P5

k�1

ak exp�ÿbks2=4�: �3�

In the following tests, two C atoms placed at a CÐC bond

distance were studied. Isotropic displacement parameters of

these atoms varied also in the limits shown above. Then, one

of the C atoms was replaced by O and shifted to the distance

typical for the CÐO bond. The next model was a peptide

group (serine residue), placed in the unit cell de®ned above.

Finally, an arti®cial structure composed from a tripeptide

Val±Ser±Ser and one water molecule was built. The atomic

composition of this model corresponds very closely to the

mean composition of models of structures discussed in x2.1, i.e.

39% of C, 11% of N, 25.5% of O, 24.5% of H, approximately.

The model was placed in the unit cell with a = b = c = 16.5 AÊ ,

space group P1 as previously.

The analysis of these simple models allows the determina-

tion of all parameters necessary to generate the density

distribution.

The obtained results were veri®ed with three real structural

models, those for enkephalin (Aubry et al., 1989; Wiest et al.,

1994), crambin (Teeter et al., 1993; Jelsch et al., 2000) and

aldose reductase (Podjarny et al., 2003), composed of 5, 46 and

320 amino acid residues, respectively (Table 1).

For the simplicity of the study and the presentation of

results, most of the tests were done with an isotropic dis-

placement factor. The results for all these models are quite

similar to each other and only the most representative ones

are shown below.

The ®nal tests were done using models with the available

anisotropic displacement parameters and con®rmed the
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suggested algorithms and the choice of parameters for prac-

tical situations.

The quality of the calculated structure factors was estimated

using a conventional crystallographic R factor that is close to a

relative error of the structure-factor magnitudes. The whole

set of structure factors up to a given resolution was divided in

shells of reciprocal space with an approximately equal number

of re¯ections per shell; this number varied with tests but in any

case it was larger than 50. The R factor was calculated both for

the whole set of re¯ections and for each resolution shell.

Usually, the R factor was maximal for the highest-resolution

shell and this value and the total R factor were used as the

criterion of the quality of the calculated structure factors.

3. Fast calculation of structure factors at subatomic
resolution

3.1. Structure-factor calculation at subatomic resolution
through direct summation

The formula

F�s� � PNat

n�1

fn�s� exp�ÿ2�2sTU�ns� exp�2i�rns�; �4�

where each atom contributes to each structure factor, shows

that the computational cost to obtain a set of structure factors

by (4) is proportional to MsfNat. Here Msf is the number of

structure factors and Nat is the number of atoms in the model;

it is supposed for simplicity that the crystal belongs to space

group P1. The functions fn(s) in formula (4) are atomic scat-

tering factors that can be represented by a sum of Gaussian

functions (3) or by a combination of spherical harmonic

functions (Stewart, 1969; Hansen & Coppens, 1978). For

isotropic atoms, a symmetric matrix U�n is replaced by a scalar

value Bn as in (1) giving

F�s� � PNat

n�1

fn�s� exp�ÿBns2=4� exp�2i�rns�: �5�

For crystals of small molecules, both Nat and Msf are of the

order of a few hundreds. For macromolecular crystals taken at

the same resolution, both Nat and Msf are hundreds or thou-

sands times larger, giving a total increase of millions in the

number of operations in (4) or (5), which makes this method

of computing structure factors very time consuming, especially

for model re®nement where it is repeated many times.

3.2. Sayre±Ten Eyck approach

An alternative way to calculate structure factors (Sayre,

1951) is based on the fundamental formula

F�s� � R
Vcell

��r� exp�2i��sr�� dVr: �6�

and the simplest approximate formula to calculate this integral

numerically is

F�s� � F�h; k; l�

� Vcell

NX NY NZ

XNXÿ1

jX�0

XNYÿ1

jY�0

XNZÿ1

jZ�0

�� jX ; jY; jZ�

� exp�2i��hjX � kjY � ljZ��: �7�
Here Vcell is the volume of the unit cell and NX, NY, NZ are the

numbers of grid points along each of the axes, Kgrid = NXNYNZ

is the total number of grid points. If we suppose that our task is

to calculate the full set of structure factors up to some reso-

lution, then usually Kgrid is of the same order as the number

Msf of these structure factors. The right-hand expression in (7)

is the discrete Fourier transform of the function represented

by the values �� jX; jY ; jZ� of the density distribution calculated

at the grid points. Therefore, the whole procedure consists of

two steps:

(a) starting from atomic parameters, calculation of electron-

density values at the points of a regular grid of the unit cell;

(b) calculation of the discrete Fourier transform of this grid

function.

The computational cost of the direct summation in (7) is

proportional to MsfKgrid or, which is the same, to K2
grid. This

high cost is the main reason why this approach came to crys-

tallographic practice (Ten Eyck, 1973, 1977) only after the fast

Fourier transform algorithm had been developed (Cooley &

Tukey, 1965). When using the FFT algorithm, the corre-

sponding computational time TFFT is proportional to

Kgrid lnKgrid, i.e. almost linear with respect to the number of

grid points.

The number of computer operations necessary to generate

the electron-density values at the grid points (step a) is

proportional to KgridNat if a straightforward procedure is used,

i.e. if for each grid point the contribution of each atom is

added. However, the computer time may be reduced drasti-

cally if it is supposed that each atom has its electron density

equal to zero everywhere outside a sphere of radius R with the

Table 1
Parameters of the macromolecular models used for test calculations.

The lines with * show the parameters of the unit cell of the natural crystals, the line with # gives the parameters of simulated crystals in space group P1.

Molecule Enkephalin Crambin Aldose reductase

No. of residues 5 46 320
No. of atoms, total 86 831 6631
% of H, C, N, O, S 50, 32.5, 11.5, 6, 0 50, 32, 10, 7.5, 0.5 40, 26, 27, 6.75, 0.25
Space group* P212121 P21 P21

Unit cell (a, b, c; �) (AÊ , �)* 10.9, 13.1, 21.2; 90.0 40.8, 18.5, 22.4; 90.5 49.4, 66.8, 47.4; 92.4
Bave, Bmin, Bmax (AÊ 2) 1.2, 0.5, 3.0 3.9, 1.4, 16.7 10.9, 2.4, 81.5
Resolution of data (AÊ ) 0.46 0.54 0.64
Unit cell P1 (test)# 15, 10, 15 30, 30, 30 55, 50, 55



centre at the atomic position. In what follows, we call this

value R the effective radius of the atom and denote the

volume of the corresponding sphere by Vatom.

Now the calculation of the density may be organized as a

cycle through the list of all Nat atoms. For each of them, its

contribution to the electron density is taken into account only

for the grid points that are closer than R to the atomic centre.

The number of such points per atom can be estimated through

the volume of the atom and that of a grid pixel as Vatom=Vpixel,

where Vpixel = Vcell=Kgrid, giving the total number of opera-

tions (and the time necessary to generate grid density values)

as

Tdens / �Vatom=Vcell�KgridNat / �Vatom=Vcell�MsfNat �8�
with the same factor MsfNat as for the calculation by the direct

formula (4) or (5). However, since Vatom is a ®xed value and

the ratio Vatom=Vcell decreases with the crystal size, the coef-

®cient before MsfNat becomes smaller for large molecules

showing for them an advantage of this method of calculation.

As a result, the total number of operations Ttotal required

to calculate a set of structure factors from an atomic model

through an intermediate generation of the electron density

may be estimated as

Ttotal � C1�R3=Vcell�KgridNat � C2Kgrid ln Kgrid; �9�
with the constants C1 and C2 independent of other parameters

of the algorithm. The value lnKgrid is small in comparison with

Kgrid so that the second term in (9) is practically proportional

to the number of structure factors calculated. The ®rst term in

(9), while being formally proportional to MsfNat, contains now

the factor R3=Vcell, which is small for macromolecular struc-

tures. This factor plays the most important role in the reduc-

tion of the computational time when using the Sayre±Ten

Eyck approach to calculate structure factors (for example, see

the row Tform=Ttotal in Table 4, x3.10).

It is worth noting that formulae (8) and (9) may also be

presented in a different way (V. Lunin, personal communica-

tion) if we introduce a mean crystal volume per atom as

Vcrys � Vcell=Nat: �10�
Then (9) becomes

Ttotal � C1Kgrid�Vatom=Vcrys� � C2Kgrid ln Kgrid; �11�
The values Vatom and Vcrys do not increase with the size of the

studied structure, therefore formula (11) indicates that for the

given model the computational cost of structure-factor

calculation is practically proportional to the number of grid

points or, as remarked above, to the number of structure

factors.

While the Sayre±Ten Eyck algorithm for structure-factor

calculation is currently implemented in most macromolecular

re®nement programs, it is not regularly used for calculations at

a very high resolution where the problem of CPU is even more

acute. The main reason for this is the much higher accuracy of

structure factors required for this high-resolution analysis.

Generally speaking, structure factors calculated through an

intermediate generation of electron density are expected to be

quite accurate even at a very high resolution when a very ®ne

grid and large atomic radii are used. However, such a choice of

parameters may signi®cantly raise the number of operations to

calculate the Fourier transform and to calculate the density

increasing the number of grid points where atomic contribu-

tion should be taken into account. As a consequence, a gain in

CPU time is not evident a priori when using this algorithm

under such conditions.

3.3. Atomic radius for a continuous density distribution

As discussed above, when generating grid density values it

is supposed that the electron density corresponding to an

individual atom is equal to zero outside the sphere of some

radius, called below an `effective' atomic radius or simply

atomic radius (it should not be confused with the atomic

radius used for various physical and chemical considerations;

the effective radius is a purely computational parameter). For

the given grid step, the number of operations to generate

electron density grows as the cube of atomic radius [see (9)],

making it one of the principal parameters that de®ne the

speed of the algorithms. At the same time, an insuf®cient

radius may cause high errors in the structure factors calculated

from this density [for a recent and detailed result, see Navaza

(2002)]. A variety of tests to study the role of this parameter

was done, and the ®rst example is a density analysis for the

synthetic model composed from the C and O atoms at the

distance of a double bond. The C atom was placed at the origin

of the unit cell and the bond was aligned with the Ox axis of

the unit cell described above. The density variation along this

axis represents the behaviour of the density both at the bond

(between atoms) and near the terminal atoms (outside the

bond). The displacement parameter was taken isotropic and

equal for both atoms.

The electron density was calculated as a sum of contribu-

tions from these two atoms, each contribution being in the

form

��r; r0;B� �
X5

k�1

ak

4�

bk � B

� �3=2

exp ÿ 4�2jrÿ r0j2
bk � B

� �
�12�

with the spherically symmetric scattering factor f �s� in the ®ve-

Gaussian form (3). Here r0 is the position of the corresponding

atom and B is its isotropic displacement parameter. The

constants ak and bk, k = 1, . . . , 5, are the same as in (3) and are

different for O and C atoms. Fig. 2 shows the decrease of the

atomic density in the centre of an atom when B varies from

1 to 5 AÊ 2; the most signi®cant change happens when B

increases from 1 to 2 AÊ 2. Since the total amount of the atomic

electron density is conserved, this automatically means the

growth of the density beyond some distance from the atomic

centre. (It can be noted that, while the value of the density on

the atomic centre decreases drastically, this happens inside a

sphere of very small radius and the corresponding recom-

pensating correction at large distances is relatively small.)

The amount of the electron density outside a sphere of a

given radius is one of the key values de®ning the accuracy of

the calculations when the electron-density generation is used
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as an intermediate tool to obtain structure factors. This

quantity and its in¯uence on the accuracy of structure factors

were studied previously by Agarwal (1978) and Lunin (1982)

for the case of the two-Gaussian approximation to the atomic

scattering factor; see also Bricogne (1993).

For an isotropic atom with a displacement parameter B and

with a ®ve-Gaussian approximation [formulae (3) and (12)]

for its scattering factor, if the density is cut at a distance R, the

relative accuracy "(s,B,R) of the structure factor FR(s,B) can

be estimated, similarly to Lunin (1982), as

"�s;B;R� � jF�s� ÿ FR�s�j
jF�s�j

�
2
s

ÿ � R1
R

r
P5

k�1

ak
4�

bk�B

� �3=2

exp ÿ 4�2r2

bk�B

� �
sin�2�sr� dr

���� ����P5

k�1

ak exp�ÿ�bk � B�s2=4�
:

�13�

The integral in (13) was calculated numerically for various

types of atoms and for different isotropic displacement factors.

Fig. 3 shows "(s,B,R) in the highest-resolution zone (for the

resolutions 0.5 and 0.7 AÊ , respectively) for the atoms C, O, N

or S as a function of an atomic radius R. Indeed, for the same

radius the relative accuracy differs by an order of magnitude

(Figs. 3a, b, c) if B changes from 1 to 5 AÊ 2. In other words,

these ®gures show by how much an increase of the displace-

ment parameters increases the cut-off radius necessary to

calculate structure factors with the same accuracy. One more

observation is that for the given radius the accuracy improves

tenfold when the resolution is decreased from 0.5 to 0.7 AÊ

(Figs. 3c and d).

Fig. 3 shows that, after some limit value, increasing the

radius does not improve signi®cantly the accuracy of structure

factors. For the following tests, the relative accuracy of 0.5% of

structure factors in all resolution zones, including the zone of

the highest resolution, was chosen as a target value. This value

is lower than the usual R factor, which for studies of small

molecules at subatomic resolution in best cases reaches 1±3%

but for macromolecules is higher.

For the radii shown, the relative error for a C atom is

notably higher than the error for O or N atoms. This is

partially explained by the fact that the magnitude of the

structure factors, the denominator in (13), decreases faster for

C than for O or N atoms. Since a real structure contains a

mixture of atoms of different types, the use of (13) for prac-

tical calculations should be revised. In more accurate esti-

mations of the atomic radius, the denominator in the formula

for the relative error should be taken equal to the magnitude

of the structure factor calculated from the whole model rather

than that of the structure factor for a chosen type of atom.

Figure 3
Relative error, in %, in the magnitude of an atomic structure factor as a
function of atomic radius (see text for details). The curves are obtained
for the resolution d and atomic displacement parameter B taken as: (a)
d = 0.5 AÊ , B = 1 AÊ 2; (b) d = 0.5 AÊ , B = 2 AÊ 2; (c) d = 0.5 AÊ , B = 5 AÊ 2; (d)
d = 0.7 AÊ , B = 5 AÊ 2. The curves are given for C (black), N (blue), O (red)
and S (magenta).

Figure 4
Minimal atomic radius R as a function of displacement parameter B (AÊ 2),
necessary for the calculation of structure factors with a relative accuracy
of 0.5% at a resolution of (a) 0.9, (b) 0.7 and (c) 0.5 AÊ . The radius is
shown for several principal types of macromolecular atoms and is
indicated as: H (green), C (black), N (blue), O (red).

Figure 2
Electron-density distribution for an arti®cial diatomic model; the atomic
displacement parameter varies from 1 to 5 AÊ 2.



3.4. Atomic radius for different types of atoms

In order to get an estimation for the minimal atomic radius

as a function of the resolution and of the value of the

displacement parameter, the test with the tripeptide model

described above has been done. The same value of displace-

ment parameter B, varying from 1 to 30 AÊ 2, was assigned to all

the atoms of this model. For each such model, the structure

factors F(s,B) = F(s,B) exp[i'(s,B)] were calculated by

formula (5).

The results of the previous section show that the atomic

radius R of the order of 3.0±3.5 AÊ gives a very small compu-

tational error in structure factors. In the current test, ®rst of

all, the radii were kept at the value of 5 AÊ for all the atoms

except C atoms for which it was varied, this being the only

source of error in the calculated structure factors. With these

parameters, the electron density was generated with a very

®ne grid, structure factors were calculated as Fourier coef®-

cients of this function and their magnitudes Fmod(s,B;R) were

compared with F(s,B). The atomic radius RC(B) for carbon

was de®ned as the minimal value for which the R factor

between Fmod(s,B;R) and F(s,B) was below 0.25%.

Similar calculations were done for other types of atoms, N,

O and H. After the limit radius was determined for each of

these types, the values obtained were used together to check

the total accuracy of structure factors when all atomic radii are

limited. Considering structure factors from each type of atom

to be independent, we expected to get an R factor of order

0.5% � 0.25% � 41/2, where 4 is the number of atomic types.

In fact, the obtained R factor was signi®cantly lower than 0.5%

in all resolution zones. This margin allowed a reconsideration

of the radius for hydrogen (its radius initially was smaller, but

not signi®cantly, than the radii for N and O atoms; since the H

atoms may represent up to half of the model, see Table 1, a

smaller radius for them can reduce the CPU time). For each B

value, the radius for C, N and O atoms was taken as found in

the previous tests and the atomic radius for hydrogen

decreased up to the value when the relative accuracy of

structure factors in the highest-resolution zone reached the

0.5% limit. The results of the search are summarized in Fig. 4.

As can be expected, the minimal radius grows with the B

value. Under the same conditions, the atomic radius for the C

atom is still larger than the radii for N and O atoms while, after

the errors in the structure factor were normalized by the total

structure factor, it became relatively close to them.

For a given type of atom, the radius R is practically the same

at different resolutions when B is small and increases practi-

cally linearly with B (Fig. 4). The growth is higher for higher

resolutions. Corresponding coef®cients of the linear regres-

sion are shown in Table 2. A minor discrepancy between

experimental data and corresponding linear functions is

observed only for the smallest B values, those of 1±3 AÊ 2, where

the radii obtained from the linear equations should be

increased by 0.05±0.10 AÊ .

As has been mentioned, both a limited atomic radius and a

®nite step of the grid are responsible for the errors in the

structure factors calculated through the density generation.

We wanted to check ®rst whether these parameters could be

studied separately in some interval of their values. If this is the

case, the same values of the effective radius obtained above

can be used for any small enough grids, simplifying the

analysis of the computational ef®ciency.

On the one hand, a density generation at a very ®ne grid

allows the estimation of a minimal atomic radius (for a given

accuracy of structure factors) for a `practically continuous

function'. On the other hand, it is clear that, when the grid step

becomes larger than some limit, the computational error in

structure factors will be too large for any radius. We hoped

that for the intermediate values of the grid step a variation

(owing to possible `border effects') of the effective atomic

radius, suf®cient to reproduce structure factors with the

chosen accuracy, should not be signi®cant. In order to check

this, the tests described above on a very ®ne grid were re-

peated at different grids and only minor ¯uctuations were

observed in the limit radius values for all studied types of

atoms (several examples are illustrated in Fig. 5).

Therefore, the tests described above allowed the determi-

nation of the minimal atomic radius (for the relative accuracy

of structure factors of 0.5%) for each type of atom as a

function of the resolution d and the B value.

3.5. Atomic displacement parameter and maximal grid step

When calculating structure factors through an intermediate

generation of density, a grid step hgr is traditionally taken as

hgr � d=3ÿ d=4; �14�

where d is the resolution of the data set (see Ten Eyck, 1977;

Agarwal, 1978; BruÈ nger, 1989; Navaza, 2002, and references

therein). Use of a ®ner grid increases the CPU time, both for

density generation and for the Fourier transform. A coarser

grid cannot be used because of the computational errors

introduced.
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Table 2
Coef®cients � and � of the linear regression R = �B + � for atomic radii R as a function of displacement parameter B.

The radii are obtained in order to ensure a relative accuracy of 0.5% of calculated structure factors.

H C N O

Resolution � � � � � � � �

0.9 AÊ 0.105 0.792 0.097 1.948 0.088 1.574 0.092 1.553
0.7 AÊ 0.149 0.807 0.140 1.926 0.122 1.563 0.129 1.537
0.5 AÊ 0.231 1.072 0.259 1.789 0.204 1.506 0.219 1.466
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The Fourier coef®cients F(h,k, l) of a continuous function

differ from the Fourier coef®cients Fg(h,k, l) for the corre-

sponding function calculated at a grid. After a proper scaling,

Fg�h; k; l� � F�h; k; l�
� P1

jx;jy;jz�ÿ1
F�h� jxNx; k� jyNy; l � jzNz�; �15�

where Nx, Ny, Nz are grid numbers and the sum is taken over

all possible integers jx, jy and jz, different from 0 simul-

taneously. Since structure-factor magnitudes decrease in line

with h,k, l, such a correction can be neglected for a ®ne enough

grid but is signi®cant for small grid numbers (as an example of

research when such a small grid is justi®ed computationally,

see Lunin et al., 2002). The mean value of the Fourier coef®-

cients decreases with increasing indices, and this drop is faster

for smoother functions. This means that the sum in (15), in

other words the difference between Fg(h,k, l) and F(h,k, l), is

large for sharp functions. (In crystallographic terms, this can

be presented as the fact that the atoms with a small B may be

`too narrow' for a given grid, `fall down between grid nodes'

and the corresponding grid function does not reproduce

correctly enough the density distribution and, as a conse-

quence, its structure factors. This also gives an idea of how to

smooth this function, as is discussed below in x3.6.) The search

for the maximal grid step hgr, which provides one with the

desired structure-factor accuracy, as a function of B was done

for a series of tripeptide models with the same B parameter

assigned to all atoms as described previously. The results for

several resolutions are shown in Fig. 6. The atomic radii were

chosen from the previous analysis and the grid step was

expressed through the resolution d as

hgr � d=n; �16�

where n is a real number. For medium B values, those between

about 4 and 15 AÊ 2, the traditional estimation of n = 3 is quite

satisfactory. The value of n can be decreased for atoms with

larger B (n = 2.5) but should be larger than 3 for atoms with B

smaller than 4 AÊ 2. Interestingly, this number decreases with

the resolution.

The results of this test allowed an estimation hgr = hgr(d) in

the form of d=n for the maximal grid step which was used in

the tests below. It is worth noting that the value of n decreases

with the resolution.

3.6. Additional displacement factor

Owing to the observation that atoms with a larger B do not

need so ®ne a grid as atoms with a small B, Ten Eyck (1977)

introduced an additional displacement parameter Badd to gain

more CPU time for the structure-factor calculation. At the

step of density generation, the atomic displacement parameter

B is increased by this arti®cial factor Badd, the same for all

atoms. As a consequence, a larger density grid can be used.

After the corresponding Fourier coef®cients are calculated,

this modi®cation of B can be taken into account multiplying

each coef®cient by exp(Badds2=4), s being the modulus of the

vector s = (h,k, l). Recently, Navaza (2002) showed that such

an approach is ef®cient not only at the traditional resolution

between 1 and 4 AÊ but allows the use of the grid step d=3 even

at much lower resolutions (see for example his test case at

15 AÊ resolution).

On the other hand, increasing B makes the atom `larger'

(see xx3.3, 3.4) and increases the number of grid points to

which its contribution should be calculated and the CPU time

requested. Therefore, for the given resolution and atomic

displacement parameters available, some optimal combination

of the grid step and Badd should be found.

It can be noted that, if all atomic displacement parameters

are large, a negative value for the parameter Badd may be used,

Figure 6
Maximal grid step to generate density suf®cient to reproduce structure
factors with R factor lower than 0.5% as a function of atomic
displacement parameter (AÊ 2). The highest resolution d of structure
factors is 0.9 AÊ (diamond), 0.7 AÊ (circle) or 0.5 AÊ (triangle). The grid step
is expressed through the parameter n: h = d=n.

Figure 5
Minimal atomic radius R for H, C, N, O, necessary to calculate structure
factors with an accuracy of 0.25% at a resolution of 0.9 AÊ as a function of
the grid step d (in AÊ ). The results are shown for the model with the
displacement parameter B equal to 7 AÊ 2 (diamond), 15 AÊ 2 (square) or
25 AÊ 2 (triangle). When B = 7 AÊ 2, a grid step larger than 0.32 AÊ does not
allow the accurate calculation of structure factors for any atomic radii.
See text for details of the choice of the atomic radii.



decreasing the atomic radii required for the accurate calcu-

lation of structure factors.

3.7. Choice of optimal parameters

The principal parameters that de®ne the accuracy of

structure factors calculated through a density generation are

the grid step hgr, atomic radii Rat,n and atomic displacement

parameters Bn, which can be corrected using the additional

displacement factor Badd. These parameters de®ne the main

computational characteristic of the algorithm, the number

Npoints of grid points to which each atom contributes when

generating the electron density. The CPU time of the ®rst step

of the Sayre±Ten Eyck algorithm is practically proportional to

this number.

Let us suppose for the analysis below that all atoms of the

model have the same displacement parameter value B and

that the model composition corresponds to the mean

composition discussed above in x2.2. For each value of the

additional displacement parameter Badd, the effective dis-

placement parameter can be calculated as Beff = Badd + B. For

the obtained Beff, the optimal value of the grid step

hgr�Beff; d; "� can be determined as well as the atomic radius

RT�Beff; d; "� for all principal types of atoms, T = H, C, N, O.

The number of operations to generate an electron density at a

chosen grid is estimated as

Npoints�Beff; d; "� / Nmod

X
T

�T

RT�Beff; d; "�
hgr�Beff; d; "�

" #3

; �17�

where Nmod is the number of atoms in the model and �T is the

relative share of atoms of the type T in proteins (see the

discussion in x2.2). The total time to calculate structure factors

is the sum of time TD to generate the electron-density distri-

bution, which is proportional to Npoints�Beff; d; "�, and of time

TFFT to calculate the FFT, decreasing with hgr�Beff; d; "�. Our

previous experience (Urzhumtsev et al., 1989), con®rmed by

the current calculations (Table 4, x3.10), shows that these two

values have roughly the same magnitude but the latter is

usually a few times smaller. Therefore, the reduction of the

total computational time requires mainly the minimization of

the number Npoints�Beff; d; "�.
Fig. 7 shows Npoints�Beff; d; "� as a function of Beff for several

different resolutions d and " = 0.5% chosen above. The

minimum of this function indicates the optimal values of Beff

which consecutively de®nes the additional displacement

parameter Badd, the optimal grid step hgr�Beff; d; "� and atomic

radii for different types of atoms.

It is important to note that in this test the optimal value of

Beff does not depend on the B value for individual atoms. In

particular, this means that, if B > Beff, a negative additional

displacement factor Badd should be introduced. In all cases, the

grid step and atomic radii de®ned as discussed above are

adequate to obtain structure factors with the required accu-

racy.

Fig. 7, taken together with Fig. 6, con®rms that for such a

subatomic resolution the optimal step can be chosen as

hgr ' d=3 similar to the case of lower resolutions (Navaza,

2002). A further increase of the grid step could accelerate the

second step of the Sayre±Ten Eyck procedure, the Fourier

transform. However, this would increase Beff and, as Fig. 7

shows, the number of points used for density generation would

slow down the ®rst step. Decreasing the grid step is not

necessary if the required accuracy of structure factors is

already attained because that would only increase the number

of computer operations at both steps.

The choice of step hgr' d=3 gives an estimate for the size of

the array of the electron density. For crambin, the density

array for the whole unit cell at a resolution of 0.6 AÊ will occupy

about 14 Mbyte, for aldose reductase at 0.9 AÊ it requires

22 Mbyte, and for the same protein at 0.7 AÊ it requires

48 Mbyte, currently available with modern computers, and

thus allows the calculation of the Fourier transformation

directly in memory for most cases.

3.8. Limit radius value

The previous sections suggest a way to choose the atomic

radii when all atoms of the model have the same displacement

parameter, which is not true in a practical situation (see x2.1;

see also Parthasarathy & Murthy, 1997, for the analysis of the

distribution of atoms with B value).

When atoms of the model have different B values, those

with a larger B value give a weaker contribution to higher-

resolution structure factors and therefore require less absolute

accuracy. As a consequence, for such atoms there is no need to

increase their radii R(B) linearly with B (Fig. 4) but some limit

value Rlim can be used instead. Probably, such a value can be

estimated theoretically knowing the distribution of atoms with

the B values (Parthasarathy & Murthy, 1997), however we

restricted ourselves by the following numerical analysis.

A model of aldose reductase was taken as a representative

case with a large variation of B. In order to ensure the

necessary accuracy of 0.5% when generating the density at the

grid with the step h = d=3, an additional displacement

parameter Badd was used as discussed in the previous section.

Each atomic radius was taken following the linear regression
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Figure 7
The number of grid points Npoints to which the atoms of the model
contribute when the electron density is generated at a grid and with
atomic radii suf®cient to calculate structure factors with a relative
accuracy below 0.5%. Curves for resolutions of 0.9 AÊ (diamond), 0.7 AÊ

(circle) and 0.5 AÊ (triangle) are shown for the tripeptide model with the
standard share of the basic types of atoms (Nmod = 28; see x2.2).
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RT(B) (Fig. 4) for the corresponding atomic type T and was

equal to RT,lim = RT(Blim) for all atoms with the value B > Blim.

The parameter Blim was varied and the R factor with the exact

structure-factor magnitudes was calculated in resolution

zones. The maximal value (corresponding as a rule to the

highest-resolution zone) was de®ned. These calculations were

repeated at the resolutions of 0.5, 0.7 and 0.9 AÊ , and several

representative examples are shown in Fig. 8(a).

At a resolution of 0.5 AÊ , the R factor in the highest-reso-

lution zone is quite sensitive to the variation of Blim and the

corresponding radius near the chosen limit of 0.5%. On the

other hand, it can be noted that, con®rming the analysis in

x3.3, the variation of the radius above some value does not

increase further the accuracy of structure factors. This

asymptotic residual error, owing to the chosen grid step, is

below 0.5% (Fig. 8a), and this gives an idea for another esti-

mation for the limiting radius of the given type of atom (Table

3). The value of Bass when the residual error becomes constant

can de®ne such a radius as Rass = RT(Bass)

A similar test was done with the model of crambin where

the atomic displacement parameters are much smaller. In the

next test, they were generated randomly in the same range as

for the aldose reductase model. The study of these models and

several with an intermediate situation shows that the asymp-

totic R factor is practically independent of the protein and of

the distribution of B values (Fig. 8a), but the value of Bass

when the asymptotic accuracy was achieved clearly correlates

with the mean displacement parameter Bmean (Fig. 8b). The

interpolation curves (Fig. 8b) can serve to estimate the Bass

value and corresponding radii Rass for other models.

When the resolution decreases, the behaviour of the R

factor does not change. The major difference is that the

asymptotic R factor approaches the chosen limit of 0.5% (at

0.7 AÊ , not shown) or even slightly overcomes it (Fig. 8a).

Nevertheless, its value, maximal for all resolution zones, is still

reasonable, and the mean R-factor value is still signi®cantly

lower than 0.5%. At these resolutions, the parameters Bass and

Rass behave also in the same way as they do at 0.5 AÊ and for a

given atomic model their values can be estimated from Fig. 8

as shown in Table 3.

3.9. Choice of parameters in a practical situation

To summarize the previous analysis: the following algorithm

to choose the parameters for density generation can be

suggested [as expected, the ®rst steps are similar to those

discussed by Navaza (2002)].

The minimal value of the atomic displacement parameter

Bmin = min {Bn}, n = 1, Nat, is calculated.

For the chosen resolution d, the optimal value of Beff(d) and

the grid step hgr�Beff; d� are de®ned; in general, an estimation

d=3 for the grid step is appropriate.

Badd, positive or negative, is taken such that it shifts the

minimal atomic displacement parameter to Beff(d):

Bmin � Badd � Beff�d�: �18�
The value of Badd is added to each atomic displacement

parameter Bn, n = 1, Nat, and for each of them the corre-

sponding minimal value of the radius RT�Bn � Badd; d� is

de®ned depending on the type of atom as a linear function of

B corrected for small values (1±3 AÊ 2) and limited by the

corresponding Rass for large B values.

The electron density is generated with the chosen par-

ameters; Fourier coef®cients are calculated; structure factors

are recovered from these coef®cients, multiplying them by

exp(Badds2=4).

Generally speaking, the optimization of the CPU time

requires that not the atom with minimal B but `most of the

Table 3
The limiting atomic radius allowing the accurate calculation of structure factors at resolutions of 0.5, 0.7, 0.9 AÊ .

The radius is shown for tests with aldose reductase, crambin and the crambin model with the distribution of the B parameter similar to that in the aldose reductase
model. See text for more details.

Aldose Crambin Crambin! aldose

d (AÊ ) Rass (%) [Bass (AÊ 2)] H C N O Rass (%) [Bass (AÊ 2)] H C N O Rass (%) [Bass (AÊ 2)] H C N O

0.9 0.63 [17] 2.6 3.6 3.1 3.1 0.65 [8] 1.6 2.7 2.3 2.3 0.65 [25] 3.4 4.4 3.8 3.9
0.7 0.42 [14] 2.9 3.9 3.3 3.3 0.40 [6] 1.7 2.8 2.3 2.3 0.44 [18] 3.5 4.4 3.8 3.9
0.5 0.22 [09] 3.2 4.1 3.3 3.4 0.25 [5] 2.2 3.1 2.5 2.6 0.25 [13] 4.1 5.1 4.2 4.3

Figure 8
Study of the limiting atomic radius. (a) The relative accuracy, in %, of
structure factors in the highest-resolution zone as a function of the
limiting atomic radius calculated as Rlim = R(Blim). The curves are shown
for aldose reductase (circles), crambin (triangles) and the crambin model
with the distribution of the B parameter similar to that in the aldose
reductase model (squares). Open symbols correspond to a resolution of
0.5 AÊ , and the black symbols correspond to that of 0.9 AÊ . The grid step
used is d=3. See text for more details. (b) The value of Bass when the R
factor reaches its asymptotic value as a function of the mean B value of
the displacement atomic parameters. The calculations are done for the
crambin model (Bmean = 4 AÊ 2; Bmax = 17 AÊ 2), for aldose reductase
(Bmean = 11 AÊ 2; Bmax = 81 AÊ 2), and for several crambin models with
modi®ed B values so that Bmean varied from 6 to 41 AÊ 2. Triangles, circles
and rhombi show the results at 0.5, 0.7 and 0.9 AÊ resolution.



atoms' of the model have a B value equal to Beff thus

prescribing a value for Badd different from that obtained by

(18). However, since Beff is quite small, this could make

displacement factors for some atoms equal to zero or to some

negative value that may cause large computational errors.

3.10. Verification of the procedure with isotropic structural
models

The suggested scheme was applied to three crystals, the

atomic structure of which has been previously solved at

subatomic resolution (see x2.2). For all these models, at this

®rst test the anisotropic displacement parameter was replaced

by the equivalent value of the isotropic parameter (1), and a

set of structure factors Fform(s) at a resolution of 0.5 AÊ was

calculated by the direct formula (5).

For each resolution d, equal to 0.5, 0.7 or 0.9 AÊ , respectively,

the parameter Badd and atomic radii were chosen for each of

the three models as discussed above (x3.9). The electron

density was generated at a corresponding grid with the step

h�Beff; d� � d=3 and structure factors Fdens(s) were obtained

as its Fourier coef®cients multiplied by exp{Badds2=4}.

The R factor between structure-factor magnitudes for the

two corresponding sets, {Fform(s)} and {Fdens(s)}, is shown in

Table 4. These calculations justify the choice of the parameters

for the requested accuracy of 0.5%. The same table allows

the comparison of the CPU time necessary for the direct

computation of structure factors by formula (5) and the

Sayre±Ten Eyck algorithms with the parameters de®ned as

above (x3.9). It shows that the latter reduces the CPU time by

1±2 orders, depending on the size of the crystal. A CPU time is

given for a Pentium III/733 MHz processor.

Table 4 gives one more observation worth noting. While the

gain in computational ef®ciency is practically independent of

the resolution, it increases with the size of the molecule being

in agreement with theoretical considerations of x3.2.

3.11. Choice of optimal parameters for atoms with aniso-
tropic scattering factors

The next test was similar to the previous one but atomic

scattering factors were taken to be anisotropic as they are

traditionally used at such a high resolution. Two different

calculations were done. In order to see more clearly the effect

of anisotropy, all isotropic atoms (H atoms) were removed

from the model.

At the ®rst test, the parameters for density generation were

taken from the previous example being estimated from the

equivalent isotropic displacement parameters. In the second

test, two different B values were calculated for each atom,

Bmin
n � 8�2Umin corresponding to the minimal and Bmax

n �
8�2Umax corresponding to the maximal eigenvalues of the

matrix U�n. These two values de®ne the smallest and the largest

size of the atom, respectively. The parameter Bmin
n was used to

de®ne the value of Badd and Bmax
n was used to de®ne the

corresponding atomic radius. Fig. 9 shows the results of these

tests with the enkephalin data at 0.9 and 0.5 AÊ resolutions.

As can be expected, the second calculation, at a ®ner grid

with larger radii, gives structure factors with a higher accuracy

(Figs. 9a and b). However, both the gain in accuracy and the

loss in CPU time, in comparison with the ®rst calculation, are

small. What is more important is that the accuracy obtained in

the ®rst calculation is suf®cient and the usual anisotropy in

displacement factors does not require a more complicated

estimation of parameters (see, in particular, Navaza, 2002). In

order to study more dif®cult cases, the anisotropy of all atoms

was arti®cially increased as described in Appendix A. The

tests repeated with such modi®ed conditions give a higher

difference in accuracy of structure factor obtained in these two

ways. The second scheme gives slightly better results and the

®rst scheme gives slightly worse results in comparison with the

previous test. Nevertheless, the accuracy of structure factors

obtained using parameters from equivalent isotropic B values

is still suf®cient for practical crystallographic studies. It is

interesting to note that the calculations at 0.5 AÊ , where the

grid step is small, give smaller errors and closer curves.
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Figure 9
R factor, in %, calculated as a function of resolution d (AÊ ), for structure
factors calculated through density generation for the enkephalin model
with anisotropic displacement parameter. The parameters for density
generation were estimated through an equivalent isotropic value (full
curves) or through minimal/maximal eigenvalues (broken curves). The
results are shown for the model with its natural displacement parameters
(red curves) and for the model with an arti®cially increased anisotropy
(blue curves). (a) 0.9 AÊ , standard parameters; (b) 0.5 AÊ , standard
parameters; (c) 0.9 AÊ , small grid step of d=12; (d) 0.9 AÊ , large radii; (e)
0.9 AÊ , isotropic atoms included.
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To check the role of the parameters, two additional test

calculations were done at 0.9 AÊ . In the ®rst one, the radius was

left as it was in the initial test but a much smaller grid step

d=12 was used to generate the density. The errors went down

essentially for higher-resolution re¯ections and, in general,

they behave similarly to the test at 0.5 AÊ (Fig. 9c). In the

second test, the grid step was kept as d=3 but all atomic radii

were increased to a very large value (5 AÊ ). In comparison with

the initial test, the R factor in the highest-resolution zone

decreased insigni®cantly but decreased practically to 0 for the

re¯ections of the lowest resolution (Fig. 9d) showing the role

of the density cut-off at a large distance.

When the isotropic atoms (H atoms) were included back

into the model, this increased systematically the error and the

difference between the results obtained with the two schemes

becomes even smaller (Fig. 9e). In summary, these tests

essentially suggest that the estimation of the parameters for

density generation from equivalent isotropic B values is

suf®cient for practical work.

4. Atomic model refinement at subatomic resolution

Calculation of structure factors from an atomic model is one of

the most time-consuming steps of the re®nement procedure.

Another time-consuming step is the calculation of the gradient

of the crystallographic criterion with respect to atomic par-

ameters when gradient minimization methods are used.

As an application of the general theorem (Baur & Strassen,

1983; Kim et al., 1984), it has been demonstrated (Lunin &

Urzhumtsev, 1985) that for any crystallographic criterion the

calculation of the gradient through intermediate steps of its

calculation, ®rst with respect to structure factors and then with

respect to density values, needs the same number of opera-

tions as the calculation of a single set of structure factors,

Tgrad ' Ttotal, and not Tgrad ' NatTtotal as could be expected.

All parameters at these intermediate steps, in particular hgr,

Rat, Badd, should be conserved as they are used for the

calculation of structure factors (Lunin & Urzhumtsev, 1985).

It can be noted that, even when some variants of the

conjugate-gradient method formally use the normal matrix

(matrix of the second derivatives), in practice this use is

reduced to the calculation of the product of the normal matrix

by a given vector that can be calculated by the same time

Tprod ' Ttotal (Lunin & Urzhumtsev, 1985; Urzhumtsev et al.,

1989). Moreover, even if the second-order minimization

methods are used for re®nement and the exact normal is

required, for most crystallographic criteria it can be calculated

by the time proportional to Ttotal (Urzhumtsev & Lunin, 2001).

Therefore, for optimal re®nement algorithms, as soon as a

fast scheme of structure-factor calculation is suggested, the

optimal schemes for calculation of all relevant quantities

(gradient, derivative along a given direction, normal matrix, its

product by a given vector) can be generated automatically.

The CPU time to calculate these quantities should be close to

the CPU time to calculate a set of structure factors.

The time Ttotal when the Sayre±Ten Eyck algorithm is used

with the parameters de®ned above was estimated using non-

optimized programs that generated the electron density in the

tests described above. For comparison, the CPU time neces-

sary to calculate structure factors by formula (4), also using a

non-optimized program, is given. The CPU times (Table 4) are

therefore overestimated but their ratio gives an idea of the

gain in computation time for the macromolecular model

re®nement that can be obtained using the Sayre±Ten Eyck

algorithm in comparison with the direct formulae.

5. Conclusions

A recently started crystallographic study of macromolecules at

a subatomic resolution poses a number of questions including

the various computational aspects. One of the major compu-

tational problems is a fast and very precise calculation of

structure factors from an atomic model. The current study

demonstrates that an ef®cient calculation of structure factors

at such a resolution through an intermediate generation of an

electron-density distribution (Sayre±Ten Eyck algorithm) is

possible, thus completing and extending the results by Ten

Eyck (1977), Agarwal (1978), Lunin (1982) and Navaza (2002)

Table 4
Comparison of structure factors, calculated by direct formula and through
density generation, and the corresponding CPU time, in s.

In all cases, the density was generated at the grid with a step equal to 1=3 of the
corresponding resolution. Badd was chosen following the algorithm described
in x3.9. Rtotal and Rhighest stand for the R factor for the whole data set and for
the re¯ections in the highest-resolution zone. Ttotal stands for the CPU time
used to calculate structure factors through the described algorithms where
Tdens and TFFT are the CPU time for density generation and for FFT; Tform

stands for the CPU time to calculate corresponding structure factors through
direct formulae. A Pentium III/733 MHz processor was used for the
calculations.

Enkephalin Crambin Aldose reductase

No. of atoms 86 831 3346

Resolution, d = 0.9 AÊ

No. of re¯ections 6445 77665 434623
Badd 4.0 3.1 2.1
Rtotal (Rhighest) (%) 0.43 (0.66) 0.3 (0.65) 0.24 (0.6)
Tdens, TFFT 0.4, 0.1 4.6, 0.9 33.7, 9.4
Ttotal 0.5 5.5 43.2
Tform 1.5 176.5 3983
Tform=Ttotal 3 32 92

Resolution, d=0.7 AÊ

No. of re¯ections 13754 164874 923661
Badd 2.5 1.6 0.6
Rtotal (Rhighest) (%) 0.33 (0.54) 0.2 (0.41) 0.15 (0.43)
Tdens, TFFT 0.8, 0.2 11.1, 1.8 84.5, 22.2
Ttotal 1.0 12.9 106.7
Tform 3.3 376 8486
Tform=Ttotal 3 29 80

Resolution, d = 0.5 AÊ

No. of re¯ections 37554 452044 2533850
Badd 1.5 0.6 ÿ0.4
Rtotal (Rhighest) (%) 0.13 (0.33) 0.08 (0.22) 0.06 (0.26)
Tdens, TFFT 2.7, 0.5 44.4, 6.9 278, 47
Ttotal 3.1 51.3 325
Tform 9 1034 23336
Tform=Ttotal 3 20 72



to this resolution range. The numerical tests show how much

CPU time is gained with the growth in the molecular size.

The traditional models of isotropic or anisotropic atoms

with a multi-Gaussian approximation of atomic scattering

factors may be completed by Gaussian `dummy-bond elec-

trons' (Afonine et al., 2002, 2004). This provides one with

precise enough models approaching multipolar ones by the

quality of details reproduced but presented by a much smaller

number of parameters. With this Gaussian form of scattering

factors of all model components, the displacement factors can

be taken into account very simply and allow an easy appli-

cation of such density-based calculation of structure factors

and all corresponding derivatives. A substitution of this

scheme for the scheme of structure-factor calculation by the

direct formulae reduces the CPU time by 1±2 orders.

The accurate calculation of structure factors through a

generation of an electron-density distribution requires an

optimal choice of parameters of the method.

The choice of the correct additional displacement param-

eter, positive or negative, is a crucial point. In general, in order

to determine these parameters for the given model and

resolution, one needs to:

(i) ®nd the minimal value of the atomic displacement

parameter of the model;

(ii) estimate the optimal value of the effective displacement

parameter and the grid step;

(iii) estimate the additional displacement parameter, posi-

tive or negative;

(iv) ®nd the corresponding atomic radii.

x3.9 provides the reader with more detailed recommenda-

tions.

APPENDIX A
Amplification of atomic anisotropy

For an atom with the scattering factor represented as a sum of

Gaussian functions (3), the introduction of an anisotropic

displacement represented by an anisotropic tensor UCart in the

formula for electron density gives

��rÿ r0� � Q
X5

j�1

aj�4��3=2

j8�2UCart � bjIj1=2
exp�ÿ4�2�rÿ r0�T

� �8�2UCart � bjI�ÿ1�rÿ r0��; �19�

easily comparable with (12). Here, (r ÿ r0)T stands for the

transposed vector (r ÿ r0) expressed in Cartesian coordinates

and Q is the occupancy of the atom. The symmetric positively

de®ned matrix UCart has three real positive eigenvalues

�1 � �2 � �3 > 0 that represent the atomic displacement in

three mutually orthogonal directions, corresponding eigen-

vectors of UCart, which are principal axes of the displacement.

The higher the ratio �1=�3 > 1, the more anisotropic is the

atom. The matrix UCart varies with the Cartesian basis in which

atomic coordinates are given.

In particular, being represented in the basis of its eigen-

vectors, the matrix UCart becomes a diagonal matrix � with the

eigenvalues �1, �2, �3 on its diagonal. If the matrix Q corre-

sponds to the transition from this basis in eigenvectors to the

initial Cartesian basis, then the matrices are linked by the

formula

UCart � Qÿ1KQ: �20�
It can be noted that

�UCart�2 � UCartUCart � Qÿ1KQQÿ1KQ � Qÿ1K2Q �21�
and, more generally,

�UCart�m � Qÿ1KmQ: �22�
A comparison of (20) and (22) shows that the matrix (UCart)

m

corresponds to the anisotropic atom with the same eigenvec-

tors (principal axes of displacement) and with the eigenvalues

�m
1 , �m

2 , �m
3 . The ratio

�m
1 =�

m
3 � ��1=�3�m >�1=�3 �23�

shows that the anisotropy of this atom is more pronounced

than for the initial situation represented by the matrix UCart.

The larger m, the more the anisotropy is increased.

The substitution (UCart)
m for UCart changes, however, the

value of the equivalent isotropic parameter Biso (1). Since the

trace of the matrix is independent of the choice of the basis,

U11 � U22 � U33 � �1 � �2 � �3; �24�
the matrix (UCart)

m should be multiplied by

��1 � �2 � �3�=��m
1 � �m

2 � �m
3 �; �25�

previously used as an anisotropic tensor for an atom with the

same equivalent Biso and with an increased anisotropy.

This simple way to obtain a more anisotropic model was

used in the tests described in x3.11. The curves in Fig. 9 are for

m = 6.
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